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Objectives

The objective of this research is to develop a theory for the behavior of a rotor wake undergoing
- dynamic perturbations. The theory should be capable of finding the flow in all three directions both on
the rotor disk and off of the rotor disk. The theory should be in a state-space form that is hierarchical .
and can be used in real-time simulation studies. It should include dynamic inflow and the He Dynamic
Wake Model as special cases, and should be derived from first principles. It should allow for mass

source terms as well as pressure differentials.

Approach
The approach taken is as follows:

1.) Formulate equations based on a Galerkin approach on the linearized potential flow equations

for a rotor in a skewed free-stream.

Accomplishments

The history of dynamic wake modeling
covers the last 55 years. References [l]
through [17] outline the work up to the 1990’s.
Several important developments followed that
changed the course of dynamic wake modeling.
First, there was an unusual anomaly in
helicopter flight mechanics that, during a
pitching maneuver, experimental flight-test data
showed that rotorcraft rolled opposite to what

Develop all Galerkin integrals in closed form based on the divergence theorem.
Study the convergence of the model for test cases with known solutions.
Develop strategies to overcome singularities.

the simulations predicted even with the new
wake models. Rosen, Ref. [18], suggested that
this might be due to the effect of wake
curvature on induced flow during the
maneuver.

Curtiss and coworkers investigated this
and found that this curvature effect could
explain part of the anomaly and that simple
vortex and momentum considerations could




capture the effect, Refs. [19-20]. Barocela,
corroborated these findings in his work on
wake distortion, Ref. [21], although some
discrepancies were noted with the work of
Curtiss, Ref. [22]. Barocela showed that the
effect of wake curvature could be incorporated
into the dynamic wake model of Pitt and Peters
by allowing the coefficient matrices to be
functions of both the wake skew and the wake
curvature. This was completed by Krothapalli,
et. al in Ref. [23].

The work on wake curvature was
extended to the He model in References [24-26]
in which it was shown that the entire coefficient
matrix (involving all harmonics) could be
modified to account for wake curvature.
Reference [27] demonstrated that the work of
Curtiss could be considered a special case of
this more general formulation, thus uniting all
of the various formulations together.

Another area of work on dynamic wake
came with the need for ground effect
calculations. The original He theory had
included a simple ground-effect correction, but
it became clear that something more general
was needed in order to accommodate moving
ground planes, inclined ground planes, and
partial ground planes. References [28-31]
progressed through a series of developments in
which the He inflow model was used to treat
ground effect. In these various approaches,
either an image rotor or a ground plane source
rotor was used to simulate the ground in a
quasi-steady manner. For these cases, a second
actuator disk (for the image rotor or ground
rotor) was used, and the induced flow from that
rotor needed to be computed on the primary
rotor. This was done numerically by an off-line
quasi-steady approach.

From that work, it became clear that what
was needed was a completely unsteady theory
that could compute the induced flow of these
secondary rotors above the disk plane and in all
three components. The He model, however,
was unable to do this; and, therefore, the need
was established for a more general treatment of
inflow dynamics. This led to an entirely new
methodology for induced flow dynamics.

Reference [32] outlined an approach for
deriving dynamic wake equations in terms of
velocity potentials rather than merely normal
velocity components at the rotor disk. Such a
formulation was shown to be derivable from a

‘Galerkin procedure applied to the potential flow
~ equations. In Reference [33], this methodology

was successfully implemented. Reference [34]
demonstrated that this method contained the old
He model (and, consequently, the Pitt-Peters
model) as a special case in which off-disk
modes were neglected. References [35-36]
demonstrated that the method did, indeed
converge for all three components of flow in
the entire half space including the plane of the
rotor disk and the semi-sphere above it.

Fluid-Dynamics Equations

The three-dimensional potential flow
equations  (momentum and  continuity
equations) for the pressure and velocity fields P
and ¥, with a free-stream velocity V.., are

S —ZF= VP (M)
Vev=0 @)

These equations have  been  non-
dimensionalized by defining P as pressure
divided by pV,,,,z, 7 as induced velocity divided
by V.., and time as a reduced time 7, (i.e., time
multiplied by V./R.) The variable £is the non-
dimensional coordinate along the free-stream
line, positive upstream. All lengths are divided

by the rotor radius R. Figure 1 shows the
coordinate system.

From continuity, Eq. (2), it is observed
that 5 can be expressed by a velocity potential
that satisfies Laplace's equation. It can also be
shown that P satisfies Laplace's equation.
Therefore, P can be expressed as a summation
of pressure potentials,®; and ¥ can be
expressed as a summation of the gradient of
velocity potentials, ¥




Pressure Potentials, and Velocity
Potentials

To transform Egs. (1) and (2) by a
Galerkin method, it is required to expand the
pressure potential, &, and the velocity
potentials, ‘¥, in terms of a complete set of
functions, each of which satisfies Laplace's
equation. In addition, they have to fulfill the
boundary conditions for pressure in the case of
@, and for velocity in the case of ¥.

The boundary conditions for pressure are
given by a discontinuity across the rotor disk,
Fig. (1). The use of an ellipsoidal coordinate
system [v,7,¥7 ], has the advantage that any
odd function in v, will allow a representation
of a discontinuity across the rotor disk. An
additional advantage of using an ellipsoidal
coordinate system is that an analytical solution
of Laplace’s equation is known and can be
expressed as,

o (v, )= B" (V) (in)cos(m¥) @

o7 (v, 7) =B W (n)sin(my) @

where P™(v) and ©Q/(in) are normalized
associated Legendre functions of first and
second kind.

Since P™(v) with n+m odd is an odd

function of vas well as a function that satisfies
Laplace's equation, it has a discontinuity across
the disk. Therefore, Egs. (3) and (4) can be
used as the expansion functions for the pressure

potentials. On the other hand, B)"(v) with n+m

even is an even function of v, but its derivative
with respect to z is an odd function of v on the
disk. Such functions can be used to represent
mass sources at the rotor disk.
p=-3 Slewor o) )

m=0n=m+1

The boundary conditions for the velocity
field are: (1) the velocity field far upstream
from the rotor is equal to zero, and (2) there is a
velocity discontinuity any place a vortex or
vortex sheet exists in the flow field. These
discontinuities only exist at the rotor blades and
within the rotor wake.

'The velocity 7 is taken as:

If the velocity-field computational
domain is limited to the infinite upper-half
volume above the rotor disk (Fig.2) the
functions to be used in the velocity expansion
do not have to fulfill any discontinuity

_ conditions. It is important to note that, in the .
case of perfectly edgewise flow, the wake is . -

located on the rotor disk plane. Thus no
convergence of this methodology is expected
on the trailing region off the rotor disk for
edgewise flow, since the assumption for the
velocity potentials is no longer valid in this
region.

In order to strongly satisfy the upstream
boundary condition for the velocity field, the
velocity potentials are defined as

pme QM aE; WM = [QTdE
¢ . 4

m=0,12,...,.00; n=mm+Im+2,...,0 6)

This strongly ensures a zero velocity upstream.
As & approaches infinity, ¥,” approaches zero.
5= 3 E(&,’,"ﬁsv,,’"wé,',"%?’,,”") NG
) m=0n=m i
where ¥ and %™ are defined by Eq. (6).
Substitution of Egs. (5) and (7) into (1),
yields the momentum equation in an expansion
form. Because a7, b", 7i¢and 7, are
functions of nondimensional time (7); while
pme wmns ghc and @ are functions of the
spatial coordinates (x, y, z), Eq. (1) takes the
following form for cos (¥) terms:
e v |ggme dﬁ:ln 7 aY/nmc Am
D [VY’,. —d;"V‘Té;—anJ

-m=0n=m

- (8)
X EVerer
m=0n=m+1
Only the cosine terms are listed, since sine and
cosine completely decouple. However, an
identical set of equations can be written for the
sine terms.

Galerkin Approach
If a Galerkin approach is applied to solve

" the conservation of momentum equation, Eq.



(8) is pre-multiplied by the gradient of each one
of some test functions, A, integrated over the
domain; and the integrals are set to zero. In a
Galerkin methodology, the test functions are
defined from the same set of functions used to

expand the pressure potential, @, and the

velocity potentlals ¥ . Thus, we choose

A"C ¢fC AI'S @"S

r=012,..,00 j=r,r+lr+2,.., )
When this Galerkin approach is applied, the

conservation of momentum equation, Eq. (8),
becomes

ffoar 3 z(vw ST -

m=0n=m

j [[VAT o 3OS vomay
m=0n=m+1

r—-0,1,2,..., s JErr+lrt+2,...,0. (10)

The Divergence Theorem allows volume
integrals to be expressed as surface integrals,
Fig. 2. Therefore, if this theorem is applied to

Eq. (lO), and because A’”, wpre and o] all
fulfill Laplace’s equation, Eq. (10) becomes

oo oo 3\Pnzc dam a2\IJmc
A?"L' n n _AI'_C n_~m S =
DIDIY BN =l aR0E a"}j

m=0n=m §

Z Z J'A" —dSr’"c

m=0n=m+1 §
r=012,...,0; j=rr+lr+2,...,. (11)
or V
i i J‘ aA’c mcﬁ_gm__a 01}‘;1”0 Am S =
m=0n=m S an dT an t?f
Z Z J‘J' ] (DmcdSz.mc
m=0n=m+1 § dii

r=012,..,0; j=ror+lr+2.,e  (12)

where 'S represents the surface area of the
upper-half inflow volume V, including the rotor
disk plane, dS represents a differential area
element; and 7 is a unit-vector, outward normal
to dS. The surface S can be subdivided into
three areas: two of them are located on the rotor
disk plane (z=0), s, and correspond to the on-
disk area, A, and the off-disk area, B; and the
third one corresponds to the area on the infinite
dome, C (Fig.2). Therefore,

s=A+B; S=s5+C (13)
The pressure potentials, @,, velocity
potentials, ¥,", and test functions, A}, are

such that all the integrals over the dome
surface, C, become zero. Therefore, the surface
of integration becomes' the rotor disk plane -
(z=0), s, and the normal outward vector is -
along the z axis. Therefore,

Jd _d

E (1)

If Eq. (14) is substituted into Egs. (11) and

(12), together with the definition of the velocity
potentials and the test functions, Egs. (6) and

(9), they become
55 pof2 e o)

m=0n=m g
i i I(D;‘ab” dsty
m=0n=m+1 g dz
r=012,...,00; j=rr+1,r+2,...,oo (15)
) ©co aq,fc
53 I [ foras o Ju-
m=0n=m s
o0 oo @TL‘
>3 H L @medsem
m=0n=m+1 g
r=012,..,0;, j=ror+lr+2,...,» (16)

where ds is a differential area on z=0.
At this point, it is important to note that the

& with n+m odd are zero on the z=0 plane off

the disk (B), whereas the z derivatives of &'
with n+m even are zero on region B. Because
of this, the Divergence theorem can be utilized
with appropriate choice of the 9/9z position in
each individual term such that all integrals are
zero on region B. The result is a set of integrals
that need only be evaluated on region A (on-
disk) for which they can be evaluated in closed
form. The expression obtained after applying
this procedure can be condensed in the
following equation.

QI R N
where ( )* = d( )/drand where each one of the

elements of the ¢ and D¢ matrices are known
in closed form.



Equation (17) is valid for any skew angle %,
which appears in the equation in the
expressions for the wake influence coefficient
matrix I°. This equation can be further
partitioned into two row-groups and two
column-groups such that m+n (or j+r) is odd
and m+n (or j+r) is even. These matrices are
organized in the following way

j+r=odd | i[j+r=odd,
[ [ ]{{n+m=0dd}}

[

n+m=odd| ||n+m=even

et e e L e ey

j+r=even|!|j+r=even, |||\n+m=even
{

n+m=odd |\ |[n+m=even

If Eq. (17) is organized as suggested in Eq.
(18), it can be partitioned as

[ e i
el

(oL, [[oL. [M}

Potential Function Expansions

| S——e |

19)

The non-dimensional pressure drop and

mass flow added to the velocity field (both
across the disk), and the velocity everywhere in
the upper-half plane can be computed for the
cosine terms as

;AV%' = [Plower - Pupper ]7]=0 =
. (20)
5 F RO e
m=0n=m+1m+3,... °
_j‘{;ﬂ_ = [Plower +P, upper]”=0 =
} | @
25 5 BMkee) o) |

m=0 n=m+2,m+4,....

0n=m m=0n=m

5= 5 5 apvwes 5 za:rv[ga»:“d;] 22)

From Eq. (22), it is seen that, to compute
the velocity field, it is required to compute the

velocity potentials, ¥, by a numerical
integration

W’" £¢mcd§ (23)

To avoid numerical integration and in order
to be able to express the velocity potentials in
terms of potentials known everywhere in the

* flow field, a change of vanable from ap to'ay

is introduced

o Tl T pors e :."f,} 24)

The constants o and ¢} are chosen such that

the new velocity potentials will give no
singularities when gradients are taken.

m_ 1
n

On = K,’,"\f(zn +1)2n+ 3)((71 + 1)2 _ mz) (25)

= ! ‘nEm
& K,'zn\[(4n —1)(n —mz)’ i (26)

where

n+m
1

P @

(n+m=1)(n—m-1)!!

' H,’:' == (n+m)tt(n=m)t 28)
and
(1)11= () 1= 2)(n=4)...(2).n = even
(1=l (e )

o)it=1 (-N=1 (=2)!!=o; (3)1=-1

If a Galerkin approach is 'applied to Eq.
(24), the following relationship can be obtained

i 7 ) S €

e o (31
and where lZCJ is the same matrix as defined in
Eq. (17) and in the Appendix.

Equation (24) can be used to express the
velocity potentials in axial flow. [32] If Eq.
(24) is substituted into Eq. (22), it yields

-5 Sarilopors varer)  @2)

m=0n=m+l

where

Since
a(cr,',”¢,,+1 +§r':"¢r't'ic1)=¢’" n>m (33)
0z "

the axial component of the velocity is given by




V=3 Talape (34)
m=0 n=m+1
We recall that the He model came in

two equivalent versions, one with velocities
expressed in terms of P"‘( ) and one in terms

- of P’”( ). Thus the MOI‘IHO model is s1rmlar

to the first version of the He model but with
both m+n odd and m+n even.

If Eq. (30) is substituted into Eq. (17),
the set of ordinary differential equations for the
velocity coefficients in terms of the pressure
coefficients for skewed flow becomes,

Y [T e Y} =[ e} 9

In axial flow, this equation becomes,

Y[}l 09
Equation (35), if truncated to include only m+n

odd terms, is identical to the form of the He
model in which velocities are expanded as

P (r) Therefore, the He model is implicitly
included in this new model. Furthermore, since

the Pitt model is a special case of the He model,
the original Pitt-Peters is also part of Eq. (35).

RESULTS

In this section, we look at some of the
results from the newest inflow methodology as
compared with the older approach. We will
consider results both in the frequency domain
and in the time domain. In the frequency
domain there are closed-form numerical
expressions based on the convolution integral
that can be used to compare the solutions with a
known result. There are also closed-form
solutions in the time domain to a step input.
With these, we can determine the accuracy and
convergence properties of the methods.

Figure 3 shows results in the plane of the
rotor disk, through the y=0 center-line both on
the disk (-1<x <+1) and up to one radial length
off the disk (-2<x<+2). The normal component
of flow is plotted for an elliptical pressure
distribution at zero frequency. The wake skew
angle is zero, corresponding to purely axial
flow as in hover or climb. The “exact”

:flow off the disk.

convolution result is compared with both the
newer Galerkin approach and the older He
model. For this case, all three results are
identical. Only the real portion is present
because of the zero frequency. Figure 4 shows

- the same results but at a reduced frequency of -

23. Here, the new approach and the
convolution have identical real and imaginary
parts, but the older He model shows some error
(of the order of 10%). This is the worst case for
discrepancy between the old and new models.
The difference is due to the coupling with off-
disk inflow modes that are neglected in the He
approach.

Figure 5 shows the same result, but for a
cyclic pressure input and at a wake sew angle
of 45° and zero frequency. Once again, the
convolution approach, the He model, and the
new model are identical. Figure 6 takes the
same case but adds a reduced frequency of 4.0.
Some error begins to show up in the new model
downstream since convergence is slower for
that case, and only ten shape functions are
included in these results. The He method gives
results only on the disk (not off); but it, too
starts to deteriorate in accuracy toward the rear
of the disk.

Figure 7 gives a more detailed
examination of convergence with number of
even terms added to the old He model. The
graph gives an error norm (based on the square
of velocity errors either on the rotor disk,
-1<x<+1, or off-disk, -2<x<+2) for the normal
component of velocity in axial flow. Ten terms
are included in the old He shape functions
(n+m odd), and the number of new terms (n+m
even) is varied from zero to twelve. (Note,

~since terms come in alternating values of odd or

even subscripts, there are half as many odd or
even terms as the value of the highest
subscript.) One can see how the error quickly
converges to zero both on disk and off disk.
However, if too many even terms or added,
numerical ill-conditioning can cause the error to
climb back up. Therefore, an optimum
approach is to take only 3/4 as many even terms
as there are odd terms.

Figure 8 demonstrates convergence for
The skew angle is a




relatively steep 75°. Flow is plotted one rotor
radius above the disk along the disk centerline
both on and off of the disk. The normal
component of velocity is computed for 10 odd
and 10 even terms and also for the optimized 10
odd and only 7 even terms. One can see that
there is improved convergence when fewer
m+n even terms are included than there are
m+n odd terms. The reason for this is that,
while the m+n odd terms (the old He theory)
are very-well conditioned, the m+n even terms
are poorly conditioned. Thus, round-off errors
build more rapidly in these new terms.
Fortunately, the on-disk terms give a good
on-disk result, so that only a few off-disk are
needed. Then flow both on the disk and off the
disk is satisfactory.

Similar results are obtained for the other
two velocity components (azimuthal and
radial), as shown in Fig. 9, which gives all three
components of flow for a cyclic input at zero
degrees skew angle. Peters-He results are only
shown for the z component since that is the

only component for which the model can

produce results. -

In addition to the above frequency
domain results, correlations have also been
done in the time domain. Figures 10 and 11
show results in the time domain for a step input
in pressure. The normal component of flow is
plotted for the case of axial flow and for a
reduced time up to z=7. The exact solution is
compared to the finite-state results with 10 even
and 10 odd terms. Flow is plotted at the disk
center, one-half radius out from the center and
one radius out from the center. Virtually exact

. agreement is obtained. Figure 10 compares this

result with that of the old Peters-He model at
the rotor center and at the rotor edge. The
Peters-He model does very well for this case.

Non-Zero Mass Flux

The next step is to try to include terms with
a non-zero net mass flux along any blade, ®}'.

This is based on the fact that these terms yield
infinite kinetic energy in the flow field. Without
Josing generality, assume a pressure distribution

p=-@%. The vertical component of induced
velocity yields

v, =®) =B’ (v)0; (i) - (3D
and therefore
(B (v)=1 | oiidist |
T Q5 (in) =;2r-tan'1 (%) off-disc (38)

For off-disc area, if Taylor series is used for

largen
Y 0 P (2 S S |
vz—”tan [”] ”(” 3773+ ) (39)‘

then the kinetic energy per unit mass of the
induced flow crossing the off-disc rotor plane
(v=0, asn<e)is that

Equation (40) fully expresses the major
discrepancy of including non-zero net mass flux
terms in the model: Involvement of net mass
flux terms, which happens in tremendous
practical cases, will theoretically introduce
infinite energy in the flow field. However, we
know that mass source rotors exist in reality,
and that they do not have infinite kinetic
energy. This is due to two facts: the media
field of the theory does not dissipate energy at
all, and the whole system, including the media
field to a distance of infinity, is in steady state.
In reality, first of all, damping of air, even.
though very small under the condition of
helicopter operating, will actually dissipate the
energy and the induced velocity decreases
much faster away from the rotor than those
shown in Eq. (39). And secondly, the operating
period of helicopter is not infinite. Furthermore,
the study of induced flow is not the final goal in
the study of helicopter’s performance — the
ultimate goal is to see how it affects the
behavior of helicopter blades, fuselage or

" personnel on the ground if it is close to the




ground. Therefore, the most important concern
is the area on or close to the actuator disc.
Based on this aspect, if the results have good
correlation at on-disc, or close-to-disc, area, the
involvement of net mass flux could be
‘tolerated.

"On the other hand, the resultant 1nﬁn1t1es in
[M°] and the influence coefficient matrix (]

have no effect on the damping matrix [D"],

which is the coefficient matrix of the pressure
coefficient vector on the right hand side.
Therefore, it might be possible to include m=n
in z" but not in the velocity potentials.

To include net mass flux terms, i.c., B (v)
and Q" (in), in the pressure distribution, the
damping coefficient matrix [D°] on the right

hand side will be required to have extra
columns. Based on the goal that the new model
should reduce to Eq. (17) if net mass flux terms
are not considered, these new entrees are

desired to follow the same formulation of [D”] .

Thus, we use the same formulas as in the -

Appendix but with m=n allowed on the right-
hand side.

Considering that the matrices on the left
hand side have to be square, the extended
momentum equation is expressed as

[ Yy po [0 T v ar} =[BT} ()

where [1'5‘] is the extended damping matrix.

Results with Mass Flux

Figures 12-16 illustrate the on-disc
optimized frequency responses of pressure
distribution P=-®) with various system
configurations. In all plots, circles are results
from the convolution integral; triangles are
results from closed-form solutions, which are
available in limited cases; and dots represent
results of the proposed state-space model by
Galerkin approach.

As discussed, the velocity expansion
excludes any terms with m=n, in which
m=n=0 is an extreme case. Notice if the

pressure distribution is P =-®, From Eq. (16),
the closed-form solution of the z-component of
on-disc velocity perturbation is uniform.
However, there is no function in the velocity
expansion that has property of uniformity on-

~disc. In a general sense, ‘it requires a large

number of terms in the velocity expansion to

yield a good approx1mat10n On the off-disc
area, the Galerkin approach decays into the far
field faster than the exact solution. This is
expected since we have no 1/n terms in the
velocity expansions.

Figure 13 is the frequency response for
infinite frequency. Based on the fact that the
response actually becomes zero in such cases,
wv,, i=zr,7, is plotted instead of v. It shows

that the on-dlsc and far off-disc areas have good
correlation with the exact solution, yet
relatively large oscillations appear at the edge
of actuator. This is a consequence of using
continuous expansion functions approximate a '
continuous velocity expansion.

Based on individual error analyses,

.optimized results of frequency response under

various conditions are obtained and plotted in
Fig. 14.

Figure 14 shows response of a higher
frequency, skewed-angle flight. Fig. 14 shows
good correlations in all four non-zero
components. This is a direct result of increase
of excitation frequency.

For purposes of illustration of generality of
the model, Figs. 15 and 16 are presented to
show the responses of pressure distribution
P=-@ with zero and infinite frequencies.

From all the plots, it can be seen that the
radial components always have good -
correlation with the exact solution, even when
the axial components yields large error. In cases
of on-disc optimization, the low power radial
function will decrease off-disc errors and
therefore yields better correlations.

Thus, the theory with the extended [D]
matrix allows for non-zero net mass flow.

Effect of Wake Curvature
The Pitt-Peters and Peters-He models

involve the wake skew angle in the equations of
motion. The skew angle appears in the form of




X = tan(y/2) where X is the skew angle.
Interestingly, in the coupling between the m-th
and r-th harmonic, X appears only to the
powers (m+r) and (m-r). It is envisioned that
the wake curvature angle will appear in a
similar ‘way. ~ However, since the wake

curvature is small, only terms to the first power

in x are used. These have been determined to
involve only the cross-coupling between the
zeroeth and first harmonics, and this has been
done for the He model but not, as yet, for the
newer Morillo model.
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Figure 12.  Frequency response of pressure distribution P=-®) with w=0. All other components of

induced velocities are zeroes. Both number of odd and even terms included in state-space model
are 11. Highest power of radial polynomials is 22. Responses are evaluated with z=0" (on the
actuator plane), 7 =0 (axial inflow), ¥ =0",180" (along fore-and-aft axis). Red circles present

values of convolution integral results at locations; blue triangles present results of closed-form
solution; and black dots present results obtained by Galerkin approach.

Figure 13.

Frequency responses of pressure distribution P=-®) with w=co. All other components of

induced velocities are zeroes. Number of odd terms included in the state-space model is 10;
Number of even terms is 3. Highest power of radial polynomials is 20. Responses are evaluated
with z=0" (on the actuator plane), =0 (axial inflow), ¥ =0",180" (along fore-and-aft axis).

Blue triangles present results of closed-form solution; and black dots present results obtained by
Galerkin approach. ‘
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Figure 14.  Frequency responses of pressure distribution P=-®] with skew angle =45, frequency
@=4. Number of odd terms is 12; number of even terms is 4. Highest power of radial
polynomials is N, =24 . Evaluation is performed on the actuator plane, z=0". Plots (a) and (b)

are real and imaginary parts, respectively, of vertical component of induced velocity. Plots (c)

" and (d) are those of radial component of induced velocity. Red circles present values of
convolution integral results at locations; and black dots present results obtained by Galerkin
approach.
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Frequency response of pressure distribution P= -®! with @=0. All other components of
induced velocities are zeroes. Numbers of odd and even terms included in state-space model are
11 and 10, respectively. Highest power of radial polynomial is 21. Responses are evaluated with
z=0" (on the actuator plane), ¥ =0 (axial inflow), 7 =0°,180" (along fore-and-aft axis). Red
circles present values of convolution integral results at locations; blue triangles present results of
closed-form solution; and black dots present results obtained by Galerkin approach.
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Figure 16.

N | . (b) X

Frequency response of pressure distribution P = -®} with @w=co. All other components of
induced velocities are zeroes. Numbers of odd and even terms included in state-space model are
12 and 4, respectively. Highest power of radial polynomial is 23. Responses are evaluated with
z=0" (on the actuator plane), ¥ =0 (axial inflow), ¥ =0,180" (along fore-and-aft axis). Red
circles present values of convolution integral results at locations; blue triangles present results of
closed-form solution; and black dots present results obtained by Galerkin approach.
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Appendix I

FORMS OF EXACT SOLUTIONS
'av.av:'ak B
En az 9z V(Z’O)"VD(Z)
Pz,1)= f(t)P(z) . 20
P(z,t)=0 t<0

Homogenous: v(x,)=v,(z—?)

Step Input:

Outside wake: vy (z.2)= P(z—1)- P(z)

Inside wake: vy (z.)=2P, +P(z—t)- P(z)

- ”

P(O") P(O+ )WAKE » z

General Solutions: P( * )s P, f (0+ )E fo
ow = folP(e=1)- P+ [, F)P(z~1+7)- P(d)lde
vlw=vow+2f0P°+2P°J‘0+frdr O<z<t

Add Closed-Form Integrals:

ow = foP(z- )+ [ f@)Pe-r+7)d

v,w=vow+2P0f(— ) O<z<t
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Move dot from fto P

_—J' fl&)P(z-1+7)d

-v,w_v0w+2p(+)f(t z) . 0<z<t :
=._=£f (2~ t+rdr+[ (*)—P(O')]f(t—z) |

Note : IW//J'f  (e-1+7)r=f(t-2) [PO*)-PO ) 7(-2)+< F@)P

Note: =lim —H+ j_m

€0

Changeto £é=z-t+7

voy == [ F(E-z+1)P(€)d¢
v == F(€- 2+1) B,(E)dE+ £~ 2)2P(0")

=_j f(E-z+1)P Bf)déc flt-2) [P(0)5(+)]
Y Y

_ continuous - ddded mass flow

Vow =_Lz_‘f(§—z+t)vP(§)d§
since  f(8)=0 6<0

v=—o f(E-z+0)VP(E)ds+ f(t- 2[P(0*)+ P0")]

in wake

Exact Solution Skewed

Qutside wake -
- 4 =
v=-[ fln-£+0Plkin
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.av

Check
————j & +1)V P(n)dn

& [ VP19 PE)

%4,%: —F()P()=-V[P(.1)]

Check
50)=-[ o~ plr)an

n<&= f(neg)=0

Inside wake: To be derived.

| w='—f§f(n.—f+t)P(ﬂ)dn

Appendix II

MOMENTUM THEORY

Fy,v,

Downstream

Upstream

Upstream: P, +2i pvi =P, +-;—p(v0 +vy )

1
F—F =5pvu(vu +2v, )
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P v, +v,




Downstream: P, +AP+51- pvE=Pp +-;—p(v0 +vp )
1 .

P,-P, +AP=E,0vD(vD +2v,)
AtROtor:  Ppg =Py +AP,  Vyp =Vpg =Vg
At infinit!: AP=2pvR(VR +V0)
At Rotor:

1
Py —Pyr =EPVR(VR +Vo)
1
Fy = Ppg +2pvg(ve +V0)='2‘PVR(VR +2v,)
1

~ Py + Ppg =—é-,0vR(2v0 +3vg)

Ppr =Py 3vp+2v,

Py =Py vt 2v,

P.—P
Hover: v, =0, X —2=3
Po - PUR

Low-Lift Climb Vg >>V
Downstream: FP,-Pp+AP=pvpv,
Atinfinity:  AP=2pvgv,

P.-—P
At Rotor: DR 0 -

F o P UR
Interactions

The Principal Investigator made six trips to Boeing Helicopter Company in Mesa,
Arizona, to discuss the work that is being done and how it might be integrated into their
simulation codes. The presentations were also made to the Boeing Foundation in St.
Louis. A trip was also made to Florida Atlantic University to discuss the inflow model
with Professor Gopal Gaonkar. Three visits were made to AFID at Ames Research

Center.
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